Этапы экономико-математического моделирования систем

Как свидетельствует экономическая теория, в экономике действуют устойчивые количествен-ные закономерности, поэтому возможно их строго формализованное математическое описание, построение математических моделей.

Модель – это объект, который замещает оригинал и отражает наиболее важные для данного исследования черты и свойства оригинала. Модель, представляющая собой совокупность математических соотношений, называется математической.

Можно отметить две особенности экономики как объекта моделирования.

1. В экономике невозможны модели подобия, которые применяются в технике. Например, в гидротехнике широко используется следующий прием: строится точная копия гидроузла (скажем, в масштабе 1:1000) и на этой копии отрабатываются все режимы его работы. Однако нельзя построить точную копию экономики в масштабе 1:1000 и на этой копии отрабатывать различные варианты экономической политики.

2. В экономике крайне ограничены возможности локальных экономических экспериментов, поскольку все ее части жестко взаимосвязаны друг с другом и, следовательно, “чистый” эксперимент невозможен.

Прямые эксперименты с экономикой имеют как положительную, так и отрицательную сторону. Положительная сторона состоит в том, что сразу видны краткосрочные результаты проводимой экономической политики. Отрицательный момент заключается в том, что очень трудно предсказать долгосрочные последствия принимаемых экономических решений. Предвидеть такие последствия можно лишь на основе концептуальных моделей развития экономики, опирающихся на прошлый опыт. Концептуальные модели и составляют фундамент математических моделей.

Математическое моделирование экономических систем– описание знаковыми математи-ческими средствами экономических систем.

Математические модели и методы стали необходимым элементом современной экономической теории. Использование математического моделирования в экономике позволяет:

1) формально описать наиболее важные связи экономических переменных и объектов;

2) использовать методы дедукции для адекватных выводов из четко сформулированных исходных данных;

3) использовать методы математики и статистики для получения новых знаний об объекте;

4) излагать точно и компактно на языке математики положения экономической теории.

Математические модели использовались с иллюстративными и исследовательскими целями еще Ф. Кенэ, А. Смитом, Д. Рикардо. В ХIX веке большой вклад в моделирование рыночной экономики внесла математическая школа (Л. Вальрас, О. Курно, В. Парето, Ф. Эджворт и т.д.).
В ХХ веке математические методы моделирования применялись очень широко, с их исполь-зованием связаны многие работы, удостоенные Нобелевской премии по экономике (Д. Хикс,
Р. Солоу, В. Леонтьев, П. Самуэльсон и др.).



В России в начале ХХ века большой вклад в математическое моделирование внесли
В. Дмитриев и Е. Слуцкий. В 60-80-е годы после почти тридцатилетнего перерыва экономико-математическое направление возродилось (В. Немчинов, В. Новожилов, Л. Канторович, ЦЭМИ РАН), но было в основном связано с попытками формально описать “систему оптимального функционирования социалистической экономики”. Строились многоуровневые системы моделей народнохозяйственного планирования, оптимизационные модели отраслей и предприятий. Сейчас важной задачей является моделирование процессов переходного периода.

Любое экономическое исследование предполагает объединение теории (экономической модели) и практики (статистических данных). Теоретические модели используются для описания и объяснения наблюдаемых процессов; эмпирическое построение и обоснование модели происходит на базе статистических данных.

Строя модели, экономисты выявляют существенные факторы, определяющие изучаемое явление, и отбрасывают детали, не существенные для решения поставленной проблемы. Формализация основных особенностей функционирования экономических объектов позволяет оценить возможные последствия воздействий на них и использовать эти оценки в управлении.

Построение экономико-математической модели происходит в несколько этапов:

1) формулировка предмета и цели исследования;

2) выявление структурных и функциональных элементов, их качественных характеристик;



3) словесное описание взаимосвязей между элементами модели;

4) формализация описательной модели;

5) расчеты по математической модели и анализ полученного решения.

Экономические модели позволяют выявить особенности функционирования экономического объекта и на основе этого предсказывать будущее поведение объекта при изменении каких-либо параметров. Предсказание будущих изменений, например повышение обменного курса, ухудшение экономической конъюнктуры, падение прибыли, может опираться лишь на интуицию. Однако при этом могут быть упущены, неправильно определены или неверно оценены важные взаимосвязи экономических показателей, влияющие на рассматриваемую ситуацию. В модели все взаимосвязи переменных могут быть оценены количественно, что позволяет получить более качественный и надежный прогноз.

По своему определению любая экономическая модель абстрактна и, следовательно, неполна, поскольку, выделяя наиболее существенные факторы, определяющие закономерности функционирования рассматриваемого экономического объекта, она абстрагируется от других факторов, которые, несмотря на свою относительную малость, все же в совокупности могут определять не только отклонения в поведении объекта, но и само его поведение. Так, в простейшей модели спроса считается, что величина спроса на какой-либо товар определяется его ценой и доходом потребителя. На самом же деле на величину спроса оказывает также влияние ряд других факторов: вкусы и ожидания потребителей, цены на другие товары, воздействие рекламы, моды и так далее. Обычно предполагают, что все факторы, не учтенные явно в экономической модели, оказывают на объект относительно малое результирующее воздействие в интересующем нас аспекте. Состав учтенных в модели факторов и ее структура могут быть уточнены в ходе совершенствования модели.

Математическая модель экономического объекта – это его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков. Гомоморфное отображение объединяет группы отношений элементов изучаемого объекта в аналогичные отношения элементов модели. Иными словами, модель – это условный образ объекта, построенный для упрощения его исследования. Предполагается, что изучение модели дает новые знания об объекте либо позволяет определить наилучшие решения в той или иной ситуации.

Для описания основных видов элементов экономической модели рассмотрим конкретную ситуацию и построим соответствующую ей модель.

Пусть имеется фирма, выпускающая несколько видов продукции. В процессе производства используются три вида ресурсов: оборудование, рабочая сила и сырье. Эти ресурсы однородны, количества их известны и в данном производственном цикле увеличены быть не могут. Задан расход каждого из ресурсов на производство единицы продукции каждого вида. Заданы цены продуктов. Нужно определить объемы производства с целью максимизации стоимости произведенной продукции (или, в предположении, что вся она найдет сбыт на рынке – общей выручки от реализации).

Для решения поставленной задачи нужно построить математическую модель, наполнить ее информацией, а затем провести по ней необходимые расчеты. Вначале при построении модели нужно определить индексы, экзогенные и эндогенные переменные и параметры. В нашей задаче свой индекс должен иметь каждый вид продукции (пусть это индекс i, меняющийся от 1 до n), а также вид ресурсов (если мы обозначаем их одной переменной; пусть в нашей задаче ресурсы обозначены разными переменными). Далее опишем экзогенные переменные – те, которые задаются вне модели, т.е. известны заранее, и параметры – это коэффициенты уравнений модели. Часто экзогенные переменные и параметры в моделях не разделяют. В рассматриваемой задаче заданы экзогенные переменные – это имеющиеся количества оборудования - К, рабочей силы - L и сырья - R; заданы параметры – коэффициенты их расхода на единицу i-й продукции ki, li и i, соответственно. Цены продуктов рi также известны.

Далее вводятся обозначения для эндогенных переменных – тех, которые определяются в ходе расчетов по модели и не задаются в ней извне. В нашем случае это неизвестные объемы производства продукции каждого i-го вида; обозначим их через х.

Закончив описание переменных и параметров, переходят к формализации условий задачи, к описанию ее допустимого множества и целевой функции (если таковая имеется). В нашей задаче допустимое множество – это совокупность всех вариантов производства, обеспеченных имеющимися ресурсами. Оно описывается с помощью системы неравенств:

или

К этим ограничениям по ресурсам добавляются требования неотрицательности переменных
х > 0. Если бы какой-то ресурс нужно было израсходовать полностью (например, полностью занять всю рабочую силу), соответствующее неравенство превратилось бы в уравнение.

Если модель является оптимизационной (а данная модель такова), то наряду с ограничениями должна быть определена целевая функция, т.е. максимизируемая или минимизируемая величина, отражающая интересы принимающего решение субъекта. Для данной задачи максимизируется величина:

р1х1 + р2х2 + … + рnхn, или

Поставленная задача далеко не всегда хорошо описывает ситуацию и соответствует задачам лица, принимающего решение (ЛПР). В действительности, по крайней мере:

1) ресурсы до некоторой степени взаимозаменяемы;

2) затраты ресурсов не строго пропорциональны выпуску (есть постоянные затраты, не связанные с объемом выпуска; предельные затраты меняются);

3) объемы ресурсов не строго фиксированы, они могут покупаться и продаваться, браться или сдаваться в аренду;

4) внутри каждого вида ресурсов можно выделить составляющие, функционально или качественно различные, в той или иной мере заменяющие или дополняющие друг друга и по-разному влияющие на объем выпуска;

5) цена продукта может зависеть от объема его реализации, то же касается цены ресурса;

6) фирма может использовать одну из конечного набора технологий (или сочетание нескольких таких технологий), характеризующихся определенными сочетаниями используемых ресурсов;

7) различные единицы получаемой прибыли могут иметь разную ценность для лица, принимающего решение (что обусловлено, например, особенностями налоговой системы);

8) интересы и предпочтения субъекта не ограничиваются максимизацией объема прибыли, поэтому целевая функция должна учитывать и другие количественные и качественные показатели;

9) для субъекта реально решаемая задача не ограничивается одним моментом или периодом времени, важны динамические взаимосвязи;

10) на ситуацию могут воздействовать случайные факторы, которые необходимо принять во внимание.


3926978395867645.html
3927021957941959.html
    PR.RU™